החוליה החסרה בדרך ל- Data Driven Customer Experience

שנת 2016 הייתה שנת ה"Data-Driven Marketing". ארגונים רבים דיברו על המעבר ל Data-Driven-CX, אבל האם הם באמת מתכוונים לזה? המשמעות של להיות Data-Driven כוללת 3 מיקודים:

דאטה – השקעת מאמץ באיסוף נתוני לקוחות ויצירת תשתית דאטה תומכת טובה עם זהויות לקוח

ניתוח ותובנות – שילוב של אנשים (Analysts/Data Scientists/אנשי מחקר ואנליזה) וכלים טכנולוגיים (כלי אנליזה, אנליטיקה וניתוח נתונים), שעוסקים בניתוח מידע דיגיטלי לטובת גזירת תובנות על התנהגויות לקוחות, סגמנטים, מיקרו-סגמנטים, פערים והזדמנויות

פעולה – יצירת מנגנונים המבטיחים פעולה ממשית על סמך הדאטה (דוגמה לפעולה: המסר שיראה הלקוח, בחירת הערוץ, ה"קמפיין", סוג ה"נגיעה", האם כן / לא נפנה אליו). וכאן זה מתחיל להסתבך, כי מסתבר שאין לנו בעיה עם איסוף דאטה וגזירת תובנות, אבל אנחנו מעדיפים להיות אלה שלוקחים את ההחלטה ולא שהיא תילקח באופן אוטומטי. וזה בדיוק הפער בין Data Driven CX ל- Gut Driven CX/Instincts Driven CX

1

זה לא מפתיע שחברות Digital eCommerce ו Digital Natives הן במהותן הרבה יותר Data Driven מארגוני Enterprise. פשוט אין להן ברירה אחרת. מספיק לבחון את המציאות העגומה שהן צריכות להתמודד עמה (2% אחוז המרה בממוצע, 70% נטישת עגלת קנייה), ולבצע את התחשיב הפשוט הבא: אם עלות הבאת מבקר חדש לאתר eCommerce עולה כ3.34$ (כולל עלות CPM, CPC), ה breakeven point של הרכישה המינימלית להצדקת עלות זו היא רכישה של כ222$  (תחת הנחה שיחס ההמרה הוא לדוגמה 3% והחברה פועלת על שולי רווח של 50%) או שמשפרים את % ההמרה או שמשקיעים ב Retention וצמיחה של לקוח קיים. כך או כך, כלי הנשק הבסיסי הוא ניתוח דאטה דיגיטלי.

בחברות אלה, אופטימיזציה של יחס ההמרה (Conversion Optimization) היא המאמץ העיקרי והנפוץ ביותר. ובשביל לבצע אופטימיזציה חברות אלה נדרשות לבצע הרבה ניסיונות כדי להעלות היפותזות, לבחון אותן ולראות מה עובד ומה לא.  CXOהנו תחום שאכן צמח בקרב חברות Digital Commerce, מהווה חלק בלתי נפרד מאסטרטגיית הצמיחה של חברות SaaS, ועכשיו נכנס גם לארגונים בהם הדיגיטל הנו רכיב משלים (לאו דווקא עיקרי) באסטרטגיית הערוצים. בחברות אלה המחזור של 'דאטה-תובנות-פעולה' למעשה הורחב לאחרונה, ושלב הניסויים מהווה רכיב נוסף בתוך סט הפעולות הנדרשות – המעבר מ Data-Driven ל Experiments-Driven:

2

לאחרונה גם בחברות Pure Digital, eCommerce וSaaS, מאמץ האופטימיזציה חוצה את גבול ה Conversion ומופנה גם לשיפור של מסע הלקוח כולו – Customer Experience Optimization. המטרה הכללית של כל מי שעוסק באופטימיזציה: Uplift להכנסות הארגון. וחברות אלה הבינו שהן לא צריכות להתמקד רק ב Conversion. אופטימיזציה של המסע כולו משפיעה משמעותית על ה-Customer Lifetime Value ועל ביצועי הארגון.

לפני חודשיים אלכס שולץ, VP of Growth של פייסבוק, העביר מצגת מרתקת, בה הוא נתן הצצה לאופן בו צוות ה Growth בפייסבוק פועל. על אילו מדדים הם מסתכלים, מה נכון יותר למדוד (עבורם) ומה לא, וגם דוגמאות שממחישות עד כמה שינוי קטן יכול להניב תוצאות מדהימות, אם רק מוכנים לעשות שני דברים:

  1. להתנסות כמה שיותר. Testing זו הדרך הטובה ביותר להתנהל. אינסוף "פגישות הנהלה" נחסכות פשוט על ידי הרצת ניסיונות בפועל על קבוצות לקוחות ובדיקה מה כן עובד ומה לא. מה שכן עובד – מקבל Scale ומופעל על כל הלקוחות הרלוונטיים במהירות. מה שלא – נשכח ולא מדברים עליו יותר. בלי ויכוחים ובלי סנטימנטים.
  2. לתת לנתונים לדבר בעד עצמם. פתיחות ואמונה בנתונים שיספרו את הסיפור האמיתי. כי מסתבר שאנשים טועים די הרבה.

בהתייחס לקהל יעד משמעותי מאוד עבור פייסבוק – המפרסמים, שולץ שיתף בדוגמה מצוינת שממחישה עד כמה לדבר כ"כ פעוט כמו שינוי המלל שפייסבוק ביצעה ב icon ה- Call to action שפונה למפרסמים – מהמילה: "Advertise" לניסוח: “Create an Advertisement” הניב שיפור של 40% במספר המפרסמים! שיפור משמעותי מאוד בתוצאות העסקיות.

איך מגיעים לתובנות קטנות/גדולות כאלה? על ידי התנסויות ולמידה. כמה שיותר התנסויות קטנות. 90% מהן כנראה יהיו לא מוצלחות ואולי אפילו ייראו "מטופשות", אבל האחוזים הבודדים – אותן תובנות קטנות שכן נצליח לעלות עליהן, עשויות להיות מאוד משמעותיות. הערך העיקרי שאנחנו יכולים לצפות לקבל מיוזמות אופטימיזציה הוא היכולת לחשוף דפוסים חבויים של התנהגות לקוחות (=תובנות). מכאן נוכל לגזור הבנה לגבי "מה הוא ערך" עבור הלקוח (=תובנות), איפה זה פוגש את המטרות העסקיות שלנו (=תובנות), מה כדאי לבצע כתוצאה מכך (=פעולות), ולבחון את התוצאות (=דאטה).

זה יכול להישמע די מתיש וכאוטי. ואכן לא מדובר על פרויקט אנליזה חד-פעמי, מדובר על למידה מתמשכת.

 

מתי לא להיכנס לCXO?

  • אם אין מוכנות בארגון להיכשל
  • אם מנהלי הארגון לא מוכנים "לסמוך" על הנתונים ומעדיפים תמיד לקחת החלטות שמונעות משיקולים אחרים
  • אם אין מחויבות ללמידה מתמשכת (זהו לא פרויקט חד פעמי אלא מסע מתמשך של ניסוי ולמידה, צריכה להיות פונקציית אנליזה שתעסוק בכך באופן מתמיד ותלך ותשכלל כישוריה בתחום. להערכתנו פונקציה זו תהפוך להיות נכס משמעותי מאוד לארגון (בין אם מדובר באיש/אשת אנליזה, במישהו/י שעוסק בזה כחלק מתפקידו, או ביחידה עם מספר אנשי אנליזה)

אם כך, אנו מתחילים לראות שהמונח היותר מדויק ל Data-Driven CX הוא Experiments-Driven CX.

מיהם האנשים המומחים בהתנסויות ומציאת דרכים מתוחכמות לאופטימיזציה?

אחד מהתחומים ה"נוצצים" ביותר בסצנת הסטארטאפים כיום הנו תחום ה Growth Hacking (מונח אותו כנראה טבע ב-2010 Sean Ellis – Growthhackers.com).

המטרה של Growth Hacking היא אחת ויחידה: להביא לצמיחה, בדר"כ כלכלית. לדוגמה, עבור סטארטאפ שמספק פלטפורמה של רשת חברתית, Growth = מספר משתמשים; עבור סטארטאפ בעולם התוכן, Growth = ויראליות גבוהה של תוכן; עבור סטארטאפ בעולם הeCommerce, Growth = אחוז המרה/הכנסות.

לאחרונה מעצבי חוויית לקוח (CX) מתחילים לעשות שימוש בטקטיקות של Growth Hackers. לא מדובר על תחומים זהים. המטרה בעיצוב חווית הלקוח היא שיפור החוויה הכוללת מנקודת המבט של הלקוח, בעוד ש Growth Hacking עוסק בצמיחה וגידול ההכנסות בכל דרך אפשרית.

אולם הטקטיקות והעקרונות של Growth Hackers יכולים להיות מאוד שימושיים עבור מעצבי CX: שימוש בכלים אנליטיים שעוזרים לזהות דפוסים חבויים בהעדפות לקוחות; חשיבה יצירתית שיוצאת מחוץ לגבולות ה"חוקיות" הברורה של engagement עם לקוחות (מכאן המונח "Hacking" – לא מדובר על האקינג במובן ה"עברייני", אלא על Hacking במובן של שבירת החוקים של "איך מגיעים לצמיחה במודל הקלאסי" והמצאת דרכים חדשות ויצירתיות, שרובן יעבדו היטב רק בפעם הראשונה וחיקוי של Hacks אחרים כבר לא יעבוד באותה האפקטיביות).

ניתן לתאר את תהליך ה Growth Hacking ב-4 שלבים:

  1. שלב הרעיון – העלאת היפותזות ורעיונות שכדאי לבחון
  2. שלב התיעדוף – איזה רעיונות אכן יגיעו לבחינה, ובאיזה סדר תיעדוף?
  3. שלב הניסוי – בחינה בפועל של הרעיונות (הרצת מבחן + קבוצת בקרה, הרצת מספר וריאציות במקביל)
  4. שלב הניתוח – בחינת התוצאות כדי להחליט האם יש הזדמנות לגדילה

3

מספר דוגמאות ל Growth Hacking ידועים, שהיוו רכיב משמעותי בצמיחה וגדילה של חברות ידועות:

  • Dropbox – יצירת תכנית תמריצים ל"צרף חבר" (החבר מקבל disk space חינם וכך גם הממליץ), התוצאות היו מדהימות. קפיצה מ 100K משתמשים ב 2008 ל4 מיליון ב 2010 ועד היום 35% מלקוחותיהם מגיעים מה Referral program הזו
  • YouTube – הוספת קישור ה “Embed” שמאפשר שיתוף הסרטונים בכל מדיה דיגיטלית בקלות הקפיצה משמעותית את השימוש
  • Hotmail – הוספה אוטומטית של המלל "קבל אימייל חינם" + לינק להצטרפות בסוף החתימה של Hotmail emails
  • LinkedIn – פישוט הוספת endorsements ל- Connections על ידי קליק אחד
  • Airbnb – הדוגמה המפורסמת ביותר כנראה וגם ה"אפורה" ביותר (חוקית אבל מעט בעייתית מבחינה אתית). בתחילת הדרך כשנה לאחר שעלה האתר והוא קצת דשדש, הם שאלו לקוחות היכן הם פרסמו דירות לפני שהגיעו ל Airbnb והבינו ש Craigslist הייתה התשובה הנפוצה ביותר. הם ייצרו API ל Craigslist בעצמם, כך שכל דירה שפורסמה ב Airbnb אוטומטית פורסמה גם ב Craigslist. אנשים שהקליקו על מודעה שהופיעה ב Craigslist לעוד פרטים הגיעו ל Airbnb. הם גם פרסמו Reviews שהובילו לאתר שלהם, ובעצם רכבו על פלטפורמה של מתחרה. ל Craigslist לקח כשנה וחצי לעלות על זה ובינתיים Airbnb הפכה למפלצת שכבר לא ניתן לעצור.

כל הדוגמאות האלה (כאן ניתן לשמוע על עוד) הנן תוצאה של התנסויות ובחינות של מה עובד, Scaling ודברים שעובדים, ותוצאות משמעותיות מאוד שהתקבלו כתוצאה מהמהלך.

המכנה המשותף: OPN (Other People’s Network) – אנשים כבר נמצאים במקום אחר. במקום לבנות רשת חדשה ולשכנע את כולם לעבור אליי, מתחברים לרשת הנפוצה ביותר ורוכבים עליה להשגת צמיחה מאוד מהירה. זהו נדבך נוסף בכלכלת הפלטפורמות עליה אנו מדברים הרבה לאחרונה.

 כלי אופטימיזציה:  אילו כלים טכנולוגיים נכללים תחת הגדרה זו?

המונח "אופטימיזציה" בהקשר של חויית לקוח כולל כמה תתי תחומים:

  • מנועי המלצה
  • כלי פרסונליזציה ו Behavioral Targeting
  • Online Testing (הכוללים A/B Testing, Multivariate Testing, Multi page Testing )
  • VoC– כלי משוב ו Voice of the Customer
  • כלי Web Analytics, Mobile Analytics ו Interaction Analytics, כלי CX Analytics
  • מעבדת שימושיות
  • ועוד

מסתבר שליותר ממחצית מהארגונים כיום יש כבר כלי אופטימיזציה קיימים בארגון. אולם בקרב ארגונים אלה, השימוש אינו מספק. רוב הארגונים פשוט אינם מצליחים לנצל את הכלים מסיבות שונות (העיקרית: מחסור בכ"א מתאים, חוסר מוכנות ארגונית, חוסר מחויבות ללמידה מתמדת). לדעתנו, הסיבה המשמעותית ביותר היא תרבותית. Testing זו לא טכנולוגיה, זו תרבות ארגונית. רוב הארגונים לא באמת מוכנים לפעול על סמך מה שעולה מן הדאטה, לא מוכנים להתנסות בדברים שלא ברור מה ייצא מהם, ולא מוכנים להיכשל.

4

לסיכום, החסמים העיקריים להצלחה הנם של יוזמות אופטימיזציה של חוויית הלקוח בארגון:

  • החסם הפסיכולוגי
  • חוסר מחויבות לתהליך הלמידה האדפטיבי הנדרש (הנחה כי זהו "פרויקט")
  • חוסר מוכנות להיכשל
  • אין מספיק דאטה (בתצורה הנדרשת) או שאין אפשרות לקבלו מספיק מהר
החוליה החסרה בדרך ל- Data Driven Customer Experience

הארכיטקטורה התהליכית לחוויית לקוח

לצד הטרנספורמציה הדיגיטלית בה נדמה שכולם עסוקים, קיימת טרנספורמציה נוספת משיקה, והיא המעבר של הארגון למיקוד בחוויית לקוח.

למה להשתמש במלים מפוצצות כמו "טרנספורמציה" בהקשר של חווית לקוח? כי מדובר בשינוי תפיסתי, מבני, תהליכי, מחשבתי. ארגונים לא נולדו לתוך מציאות תחרותית בה המנצחים הגדולים הם אלה המצליחים לעצב ולטייב את חוויית הלקוח, רובם נולדו לתוך עידן בו עלויות או טיב המוצר הם המבדלים. כתוצאה מכך, ארגונים בנויים מקטעית (שיווק/מכירות/שירות/תפעול) ומוצרית. אם תסתכלו על מבנה ארגונים חדשים יחסית בעולם ה B2C, ובייחוד על ה Digital Natives הבולטים (נטפליקס, אובר, Airbnb ודומיהם), תבינו מייד שבארגונים כאלה אין צורך בטרנספורמציה שכזו. חוויית הלקוח היא זו המכתיבה את האופן שבו הארגון פועל. המבנה, התהליכים, שיטות העבודה וגם דפוסי המחשבה והתכנון, כולם פועלים כדי לשרת את המטרה הזו. הארגונים האלה נולדו לתוך המציאות הזו.

המשמעויות של ה"טרנספורמציה למוכוונות חוויית לקוח" הן רבות, וכוללות משמעויות ארגוניות (מבנים ארגוניים משתנים), משמעויות פוליטיות (בכ20% מהארגונים הגדולים ממנים CCO/CXO – Chief Customer Officer / Chief Experience Officer לעתים כיחידה נפרדת ולעתים תחת שיווק/גוף עסקי אחר), תהליכיות (הגדרה מחדש של יחסי הגומלין בין שיווק-IT-מכירות-דאטה ואנליזה-תפעול), תרבותיות, טכנולוגיות ועוד. אבל במאמר הזה אנו רוצים להתמקד במשמעויות שקשורות בבניית הארכיטקטורה התומכת שארגונים נדרשים לה, ה"בניין" שיתמוך במאמצי העיצוב, ההפעלה והשיפור המתמיד של חווית הלקוח.

הבנייה הזו כבר כאן ומתחילה להתרחש בפועל ממש בימים אלה. אם בשנה שעברה הרגשנו שארגונים מנסים לעכל את המציאות החדשה, מודעים לכך שעליהם להשתנות אך לא בטוחים איך, השנה אנחנו מתחילים לראות כבר תכניות יותר אופרטיביות, שכוללות יישום של אבני הבניין והתשתית התומכת – חבילות Marketing Automation כשלב ראשוני, אנחנו רואים גם התארגנות מבחינת מבנה אנשים ותהליכים וניסיון להתחיל לגבש ממשקי עבודה בין האגפים השונים – שיווק, טכנולוגיה, דאטה, אסטרטגיה, דיגיטל, שירות, תפעול… זוהי רק ההתחלה, אבל עדיין – התחלה.

אז אנחנו עכשיו בתקופה בה נוצרים מערכים ארגוניים חדשים. כמעט בכל ארגון עמו אנחנו בקשר, בכל תעשיה, אנחנו מרגישים את השינוי. אולם יחד עם ההתקדמות הזו, אנו רואים שלארגונים רבים התמונה כולה עדיין לא ברורה. איך בסוף כל החלקים מתחברים? מה בין Marketing automation למסעות לקוח? מה בין תפעול לאנליטיקה? איך נראית ה"זרימה" בין החלקים השונים? מהם שלבי הפעולה העתידיים?

לצורך זה גיבשנו ארכיטקטורה תומכת חוויית לקוח, זוהי ארכיטקטורה תהליכית שמנסה להראות מצד אחד – איך הכל מתחבר, ומצד שני – מהם הצעדים השונים שמרכיבים את התהליך השלם.

CX Architecture

Data Platform: פלטפורמת הדאטה וניהול זהויות
הכל ייפול ויקום על הדאטה, זוהי מנטרה שאנחנו לא מפספסים הזדמנות להדגיש. דאטה = הלב של הארכיטקטורה. אין דבר חשוב יותר להשקיע בו בזמן הקרוב מאשר בפלטפורמת הדאטה שלכם.
אל תתפתו לקפוץ לשלב ה ENGAGEMENT והערוצים לפני שיש לכם גרעין טוב של פלטפורמת דאטה המכילה זהויות לקוחות עם "הכנה למזגן" להתחברות למקורות מידע רבים ככל האפשר.
אבל "דאטה" זה לא מספיק, אותה פלטפורמת דאטה צריכה להיות מאורגנת סביב "זהויות" של לקוחות. אחד העיסוקים המאתגרים בשנה הקרובה יהיה לנהל את אותן זהויות – Customer Identities, ולחבר כמה שיותר פיסות מידע לאותה הזהות, לא משנה באיזה ערוץ אותו לקוח משתמש, באיזה device/מכשיר, האם משוחח עם הארגון ב online או ב offline. כאן טמון האתגר של חיבור מידע בין לקוחות "מזוהים" ו"לא מזוהים", מידע על נקודות מגע "פרסומיות" לעומת "שיווקיות"/"שירותיות"/"תפעוליות", והרחבה מתמדת של אותה פלטפורמת דאטה שחייבת להיות אמינה, איכותית, רחבה ורלוונטית.
בשלב זה לא רק חשוב אלא קריטי לקיים שיתוף פעולה הדוק עם אגף הטכנולוגיות, ה- Data Officer, וכל מי שאמון על ניהול הדאטה בארגון (עוד שינוי מהותי שמתרחש במקביל בארגונים כיום – ההסתכלות על דאטה בצורה מרכזית והניהול היותר מסודר של הנתונים). לכל אחד מהשחקנים יש חלק חשוב בהקמת ה Data Platform, בתחזוקה, בניהול, ב Governance ובהרחבה שלה לאורך זמן.

Content – תוכן:
עוד יכולת (וכרגע לגמרי מפוספסת בישראל!) שנמצאת בלב הארכיטקטורה היא יכולת התוכן. הרי ללא התוכן, מדובר במבנה מפואר בעל צינורות ומנגנונים מתוחכמים שכלום לא זורם בתוכן. התוכן רק כעת מתחיל לקבל את החשיבות הראויה לו – כ"נשא" העיקרי שמסיע את הערך ללקוח. יש כאן הרבה מקום ליצירתיות, חדשנות, והתקרבות אמתית לצורך האמתי של הלקוח לקבל מידע ושירותים המותאמים לו אישית.
בתחום זה אנו מזהים פער משמעותי כיום, בין החשיבות המאוד גבוהה שניתנת לתחום התוכן, ניהולו, שימוש בכלים טכנולוגיים התומכים באסטרטגיית Content Marketing, ובין החשיבות הפחותה יחסית שהתחום מקבל בישראל. שימו לב לאסטרטגיות ניהול, יצירה, אצירה, הפצה והתאמה של תוכן, והתחילו לבחון כלים תומכים לניהול תוכן כמו כלי Content Marketing, כחלק ממכלול הכלים הטכנולוגיים המאומצים כיום.

אנליטיקה:
אנליטיקה עוטפת את כל מחזור החיים של ניהול חויית לקוח ומשמשת אותנו בכל שלב, החל משלב ה"גילוי" בו אנו מגלים תובנות בדאטה, דרך שלב עיצוב חויית הלקוח (עדיין בשלב התיאורטי), ולבסוף אופטימיזציה שבוחנת בדיעבד מה קרה ועוזרת לנו לגזור תובנות המוזנות בחזרה לפלטפורמת הדאטה.
אנליטיקה תמיד הייתה ותמיד תהיה, אז מה השתנה? השינוי העיקרי לדעתנו הוא שהאנליטיקה שעד כה ישבה לצד המאמצים ה"תפעוליים", משולבת אינהרנטית בכל שלב בתהליך ניהול חויית הלקוח. אי אפשר כבר להפריד! אם היינו יכולים לחבר את האנליטיקה, עיצוב מסעות הלקוח, ואת התפעול שלהם לכדי אדם אחד שיידע לעשות את הכל – היינו עושים זאת. ואכן כיום זהו הפרופיל הרצוי לעובדים דרושים עבור מחלקות שיווק/חויית לקוח/מנהלי מסעות לקוח. כשאי אפשר לגייס אדם אחד שיעשה הכל, מגדירים צוותי עבודה שיהיו כמה שיותר "מעורבבים". המטרה שלכם צריכה להיות לערבב ולשלב כמה שניתן את היכולות האנליטיות בארגון שלכם עם היכולות התפעוליות. תושיבו אנשים יחד, תגדירו צוותי עבודה, תדאגו להעברת ידע ביניהם, תחפשו אנשים מצויינים עם יכולת למידה ולמדו אותם את מה שחסר.
בגזרת הכלים הטכנולוגים מגיעה עזרה במאמץ זה – כאשר כלי האוטומציה השונים מתחילים לשלב גם יכולות של בינה מלאכותית ובעיקר Machine Learning כדי לסייע לנו לבצע את אותם התהליכים (סגמנטציות, טירגוט, פרסונליזציה וכד') יותר חכם, תוך כדי קבלת "תובנות" והמלצות מהמערכות לגבי הצעד הבא הנכון ביותר, בהסתמך על כל הנתונים שכבר נצברו.

איך זה עובד? איך נראה התהליך?
איך נראה תהליך העבודה של עיצוב חוייות לקוח? מהם השלבים?
1. בניית פלטפורמת הדאטה הרחבה: איסוף, התחברות למקורות מידע שונים, יצירת APIs, יצירת תשתיות דאטה תומכות
2. יצירת, ניהול וטיוב של זהויות לקוח (multi-device, multi-channel).
3. גילוי תובנות בדאטה הקיימת, תכנון והגדרת מטרות ו-KPIs למדידה.
4. עיצוב חויית הלקוח: עיצוב מסעות לקוח, מקטעים, קהלים, טריגרים ועוד
5. תכנון, יצירה והתאמת התוכן לכל חלק במקטע.
6. תכנון orchestration של ערוצי ההתקשרויות לפי המסעות, המקטעים והמטרות שהוגדרו.
7. יצירת המלצות לפעולה (עם או בלי סיוע אנליטי, עם אופציה לשימוש במודלים מבוססי Machine Learning)
8. הוצאה לפועל תוך עריכת נסיונות – Testing & Optimization
9. אופטימיזציה – בדיקה מה עובד בפועל לאיזה תרחיש ולאיזו מטרה, והתאמת התכנית.
10. המידע מוזרם לפלטפורמת הדאטה. חזרה לשלב 1.

נשמע דמיוני? כך חברות מוצר טכנולוגי (Digital Natives) עובדות כיום. בלב העיסוק של חברות כאלה – המוצר שלהן – יושבים אלגוריתמים שבעצם ממכנים את כל הסעיפים למעלה. בכל רגע נתון בו אנו עושים שימוש באמאזון/Uber/ AirBnB וכד', כל השלבים מתקיימים. אבל בחברות אלה זהו תהליך ממוכן לחלוטין, אלגוריתמי, מונע-נתונים, נערכים כל הזמן נסיונות כדי לטייב את המודל ולייצר המלצות פעולה יותר חכמות. יש המכנים תהליך זה “The Brand Algorithm”.
אז גם אם לא נהפוך להיות האמאזון הבא (למה לא בעצם?!) אפשר לשאוב השראה רבה מהמנגנונים שחברות אלה מצליחות לייצר, באופן שמשפיע על המוצר שלהן בזמן אמיתי – ה Brand Algorithm שייחודי רק להן. חויית הלקוח לא מלווה את המוצר, היא מוטמעת בו כ"כ חזק שהיא הופכת להיות המוצר עצמו במידה רבה.

מהם החסמים?
ישנם עדיין אתגרים רבים, שימשיכו ללוות אותנו, וכדאי להיות מודעים אליהם:
1. יצירה וניהול של "זהויות לקוח" מהווה סוגיה משמעותית, עדיין לא פתורה גם לא אצל "מיטיבי הלכת". בשוק ה AdTech, מסעות הרכישות של יכולות אלה (DataTech) כבר החלו, אורקל לאחרונה רכשה את Crosswise שמתמחה בניהול זהויות לקוחות cross-device (איך אפשר לזהות שאני בנייד ואני בדסקטופ זה אותו לקוח לא מזוהה?)
2. איסוף הדאטה (התחברות למקורות מידע שונים, חיצוניים-פרסומיים ב paid media, פנים ארגוניים ב owned media, מובנה ובלתי מובנה וכד') וניהול אפקטיבי של הדאטה
3. אקטיבציה והוצאה לפועל של התכניות אל מחוץ לחומות הדיגיטליים של הארגון (יכולת שליטה מועטה, קבלת מידע מוגבל בחזרה).
אלו רק חלק מהחסמים, והם כמובן טכנולוגיים (עוד לא נגענו בחסמים הארגוניים, תרבותיים, תהליכים, כישורים, אנשים, פוליטיקות וכד'). מעניין לראות שהחסמים ברובם נוגעים בדאטה ובאנליטיקה. עם ה"צנרת" – תשתית האוטומציה, Marketing automation כבר פחות או יותר הסתדרנו.

חסם נוסף ומאוד משמעותי בעיניי הוא בכיוון אחר, והוא החסם היצירתי. העיסוק בטכנולוגיה, דאטה, אנליטיקה, ואוטומציה, לעתים מושך את תשומת הלב מהדבר החשוב ביותר – יצירתיות.
נדרשת כאן יצירתיות מסוג אחר, יצירתיות מחשבתית, חיפוש אחר שימושים מעניינים בדאטה, עיצוב מסעות לקוח חדשניים/מיוחדים/ פורצי דרך שמספקים תועלת באופן בו אף אחד אחר עוד לא עשה. הרי אותה ארכיטקטורה לחויית לקוח הולכת להתקיים אצל כל ארגון בסופו של דבר, אז איפה כאן הבידול? איך מוודאים שחוויות הלקוחות שאתם מעצבים ללקוחות שלכם ישקפו את המהות של החברה והמותג? איך אותו Brand Algorithm הולך לבדל את הארגון שלכם מ Brand Algorithms אחרים? זהו בדיוק האתגר הקריאטיבי של השנים הקרובות.

הארכיטקטורה התהליכית לחוויית לקוח

מה מעכב את תחום הבוטים בישראל?

בזמן שבשוק הבינלאומי תחום הבוטים מתחיל לפרוח, בישראל יש הרבה מאוד ניסיונות, בחינת יכולות, פיילוטים ומאמצים. אך מתחיל להיווצר פער משמעותי לרעת השוק המקומי. מי שהחל לעסוק בתחום הבוטים ה"נוצץ" מהר מאוד מגיע לשני הגורמים המעכבים את מימושו בישראל: ענן, ועברית.
* הערה: "בוט" הנו מונח גמיש, יש כאלו שיטענו שבוט יכול להיות תכנית מאוד פשוטה מבוססת חוקים (כשלקוח אומר X -> תענה Y), יש כאלה שיטענו שבוט "אמתי" הוא כזה המציג יכולת לנהל שיחה חופשית עם מכונה שיודעת להבין משפט, לפרק אותו למלות מפתח, לחלץ כוונה, לחולל תהליך בהתאם, להתחבר למערכות שונות, לשלוף את המידע ולהחזיר אותו לשואל תוך ניהול "שיחה" עם כל כללי השיחה וניהול הדיאלוג.
מבחינתנו, פלטפורמת בוטים מספקת 3 דברים: ניהול דיאלוג, הבנת כוונה, וחילול APIs.

הגורם הראשון המעכב את תחום הבוטים בישראל – הענן:
תחום הבוטים נשען על טכנולוגיות מאפשרות, שעוסקות בעיבוד דאטה, ניתוח טקסט, יכולות AI, ML, NLP, ושירותים כדוגמת ניתוח כוונה (Intent), ניתוח סנטימנט, מילונים, ועוד שירותים שאיכותם עולה ביחס ישיר לכמות הדאטה הקיימת. במלים פשוטות, היכולות ה"מתקדמות" של מוצרי הפלטפורמות נמצאות בענן.
בישראל אנו נמצאים בעיכוב משמעותי באימוץ ענן ציבורי (מוערך בכ-4 שנים). שתי תעשיות עיקריות שנתקלות בחסם זה ודווקא הן מהוות מועמדות מצוינות להפקת ערך עסקי משמעותי מעולם הבוטים, הן תעשיית הרפואה, וחברות בתחום השירותים הפיננסים. כתוצאה מכך, הפרויקטים שאנו רואים כיום בתעשיות אלה בישראל הם או כאלה המוגבלים לתחום בו נושא הענן אינו מהותי (לדוגמה, הזמנת פגישה – ללא פרטים מזהים/בירור פרטים כלליים/קבלת מידע רוחבי שאינו רלוונטי לי כלקוח), או לחלופין הולכים למודל של יישום מקומי On premise. כתוצאה מהיישום המקומי, לא נהנים מהיתרונות הטכנולוגיים שנמצאים בענן. כך או כך, ארגונים מפסידים חלק ניכר מהיכולות הפונקציונאליות.

הגורם השני המעכב את תחום הבוטים בישראל – עברית:
אין ספק שזהו הגורם העיקרי שמעכב את היישומים המקומיים. זה לא אומר שלא ניתן ליישם בוט בעברית, זה רק אומר שצריך לעבוד הרבה יותר קשה לצורך זה, לבנות הרבה מהחוקה ב NLP, לבנות מילונים נוספים, וגם "לוותר" על חלק מהיכולות שהיינו יכולים לקבל באנגלית (ניתוח סנטימנט היא הדוגמה הבולטת). אחד מהתחומים בו מתחיל להיווצר פער משמעותי הוא נושא ה Voice, כשחברות בינלאומיות מתחילות להוציא יישומים מבוססי Voice על גבי פלטפורמות כמו אמאזון (אלקסה), גוגל ומיקרוסופט, בישראל אין עדיין על מה לדבר בהקשר הזה…

סיום מעט אופטימי: אין לנו ספק שבסופו של דבר תהיה תמיכה בעברית בשוק, לא ברור באיזו רמה. מצד שני, ארגונים רוצים להתחיל להתנסות בעיקר על מנת ללמוד מהו הערך המתאים אותו ניתן להציג ללקוחות ולארגון, שכן לתחום הבוטים יש פוטנציאל רב בשיפור חויית הלקוח ובחיסכון עלויות תפעול, וחבל לפספס. אך במסגרת הפיילוטים והפרויקטים שמתחילים כבר לצאת כרגע לשוק, כדאי להכיר במגבלות אלה, לבחור שותפים שיידעו לחפות על הפער, ולנסות לייצר קואליציות של רכיבי בוטים שונים כדי לייצר את הפתרון המתאים. אנו מאמינים שהשאיפה כן צריכה להיות ליצירת מנגנון לומד מבוסס Machine Learning, ולנסות למנף את הדאטה הקיימת ממוצרי צ'אטים קיימים/מקורות מידע רלוונטים אחרים.

מה מעכב את תחום הבוטים בישראל?

מהי ארכיטקטורת הדאטה של תחום השיווק וחויית לקוח?

זהו הפוסט השלישי בסדרת פוסטים בנושא Data driven businesses. בפוסט הראשון סקרנו את הסיבה בגינה אנחנו מדברים כ"כ הרבה על דאטה וההקשר הרחב של Data driven Businesses. בפוסט השני עשינו זום אין לצורך, לתועלות, לאף לצעדים הדרושים כדי להפוך ל Data Driven Marketer.

כעת אנחנו רוצים להגיע לשאלת ה"איך": איך צריכה להיראות ארכיטקטורת הדאטה שלנו. מדוע הארכיטקטורה הקיימת (ברוב המקרים) אינה מספקת את הצורך ב" Customer experience view" לשנים הקרובות, וננסה להבין מהן אבני הבניין של ארכיטקטורה זו, מהו הדבק שיאחד בין הדברים ועוד שאלות יותר פרקטיות.

דוגמא אחת נהדרת לארכיטקטורה כזו, בעלת 5 שלבים:

Data architecture

מקור: ChiefMarTech

ארכיטקטורה זו מכילה 5 רכיבים שהם מהווים גם 5 שלבים:

  1. Backbone: זוהי תשתית הנתונים. השלב בו אנו אוספים ואוגרים נתונים (בין אם פנימיים או חיצוניים, מובנים או לא מובנים). יש כאן מספר שינויים עליהם נדבר בהמשך, החשוב שבהם הוא שמקורות המידע ילכו ויתרבו כל הזמן, חלקם לא ישבו פיזית אצלנו, ואנחנו צריכים לפעול כדי לנהל אותם וירטואלית בצורה מרכזית ולחבר אותם חיבורים לוגיים (לאו דווקא פיזיים) לישות אחת כדי להבין יותר טוב את חויית הלקוח הרציפה.
  2. Discover: השלב האנליטי בו אנחנו מייצרים מודלים אנליטיים, עושים סגמנטציות, עושים פרדיקטיב, דיגיטל אנליטיקס וכד'.
  3. Delivery: החלק של קבלת החלטה או "איך הנתונים משפיעים על קבלת ההחלטות בפועל" – ה SHARE של הנתונים בארגון, חשיפה שלהם, שילוב התובנות בתהליכי קבלת החלטות, תכנון מסעות הלקוח… "ניהול התובנות" וגם governance.
  4. Activation: החלק התפעולי – הוצאה לפועל של תהליכים המושפעים מהתובנות – לדוגמה קמפיינים שמערכות מרקטינג אוטומיישן מפעילות, אותם ניסיונות של AB testing שמועלים לאוויר….
  5. Automation: כשעושים "SCALE" לאותם טסטים, עוברים לשלב הסיסטמתי.

בין שלבים אלה קיימים "גשרים" וחיבורים, שגם הם תהליכים בפני עצמם.

מהם השינויים בשכבת ה Backbone, שכבת איסוף וארגון הנתונים?

DW

הדבר הראשון הוא ההבנה שה- Data Warehouse הוא לא מענה מספק עבור הבנת חויית הלקוח, הוא מספק רק חלק מהתמונה, וזה נובע מכמה סיבות:

  • בתחום השיווק / חויית לקוח מתבקשת גישה "חקרנית" (Exploratory) לנתונים. ה- DW הקלאסי נבנה סביב סכימות דאטה מתוכננות היטב שבאות לספק מענה לחקר מבוסס שאילתות 'ידועות מראש'. כאן לא מדובר על שאילתות, אפשר להקביל את זה יותר ל"נבירה" בדאטה כדי למצוא דברים מעניינים, תובנות שעולות, קורלציות, קשרים שלא חשבנו שקיימים.
  • עבור צרכי השיווק (חלק מהם) לעתים המידע הגולמי עדיף ממידע מסוכם ואגרגטיבי.
  • אג'יליות ו Time to market הם קריטיים. DW הוא עדיין תהליך Batchy, והוספת נתונים נוספים אליו לוקחים זמן בשל הצורך לחבר לסכימות המידע.

אפשר להגיד שהDisruptor הראשון ל-DW עבור צרכי השיווק היה מידע דיגיטלי, וזה רק יילך ויתגבר. כיום אנחנו צריכים לכלול גם מידע התנהגותי, מידע המגיע מנכסים דיגיטליים שלנו וחיצוניים, מידע על קהלים חיצוניים, מידע טבלאי ומובנה, לצד מידע לא מובנה ועוד ועוד.

מהם DMPs וכיצד הם מהווים חלק מארכיטקטורת הדאטה שלנו?

ה- DMPs (Data Management Platforms) הם סוג של DW שנבנה ספציפית לטובת ניהול נתוני "אנשים" (לא מזוהים / IPs) – בעיקר cookies, לבנות ממידע זה קהלים, לייצר סגמנטים, וגם להפיץ מסרים לאותם הקהלים תוך הפצתם לגופי מדיה ו DSPs שונים.

DMP

מקור: Yashi.

אותם DMPs מכילים 3 סוגי מידע:

1st Party Data: מידע בבעלותו של הארגון: CRM, DW, מערכות ליבה, נקודות המכירה, וגם מידע מה Owned media, מהאתר, אימיילים, מובייל…. לחברות בתחום B2C הכי קל להתחיל לשפוך מידע זה לתוך DMPs ולהתחיל ליצור קהלים מתוך מידע זה (ה"לבנה" הראשונה). עוד לפני הוספת מידע חיצוני על קהלים נוספים, ניתן לטרגט לקוחות עם מאפיינים שונים בהתבסס על הדאטה שכבר יש לנו.

2nd Party Data: מידע שאנו מקבלים מחברה אחרת, שמהווה שותפת-מידע שלנו (לדוגמה, אם אני חברת אשראי אני יכולה לחבור לרשת שיווק ולעשות שימוש, בהסכמת הלקוחות שלה, במידע הנצבר על לקוחותיה ממועדון הנאמנות שלה). יש כאן בעצם שימוש שלי ב 1st party data של חברה אחרת. כאן ניתן לטרגט ולהגיע לקהלים נוספים בעלי מאפיינים דומים ללקוחות הטובים שלי, ולבצע שילובים מעניין בין 1st party ל 2nd party כמו לדוגמה, להציג את המסר השיווקי ללקוחות שעונים על קריטריונים מסוימים, ובתנאי שהם לא לקוחות כבר של השירות הזה).

3rd Party Data: מידע על קהלים במרחב הדיגיטלי שנצבר על ידי חברות צד שלישי. לדוגמה, לקוחות המחפשים מידע על טיסות ליעד מסוים; אנשים חובבי ספורט המבלים באתרים מסוג זה; אנשים בגילאים מסוימים שאוהבים בישול וגרים באזור ספציפי ועוד ועוד אינסוף חיבורים של קריטריונים שונים שמגדירים קהלים חדשים שיכולים לעניין את המותג שלי.

מימד נוסף בארכיטקטורת הדאטה שלנו הודות להתפתחות תחום ה-IoT והמידע הסנסוריאלי:

Context is King!

טשטוש הגבולות בין העולמות הפיזיים והדיגיטליים כבר מתרחש כיום, הרבה בזכות Internet of things. אינטרנט כבר חיבר בין האנשים, כעת הוא מחבר גם בין מכשירים ודברים שונים, והרבה מהם! יש לזה משמעות עצומה על חיי היום-יום שלנו, על התארגנות ארגונית ועל מאקרו כלכלה בכלל. מגזין "כלכלה דיגיטלית" (אשר הקדיש מהדורה שלמה רק לנושא אינטרנט של הדברים) ציין כי בתקופה הקרובה יצאו לשוק בין 3 ל-5 מיליארד "צרכנים חדשים", אותם נצטרך לשדרג, לתמוך,  להתקין ולתת להם שירות, אשר לא היו קיימים קודם לכן.

Internet of things הנה החוליה החסרה במהפכה הדיגיטאלית, המאפשרת להפוך את חוויית הלקוח לחכמה ורלוונטית. חוויה שהלקוחות כבר מצפים לקבל מנותני השירותים שלהם. מי שלא הבין עדיין כי התחרות האמיתית של בנק, למשל, איננה בנק אחר, אלא חווית השירות של אמזון, Uber ו Airbnb.

לחוויה דיגיטאלית כזאת, מתמשכת וכזאת המטשטשת גבולות במעברים בין מכשירים, מקומות ורגעים שונים במסע הלקוח, קוראים Ambient computing. מדובר בשירות מדויק המבוסס על הפעילות הפרסונלית וההעדפות האישיות של האדם. Internet of things יחבר בין נתונים ו"דברים" ויספק ניתוח מידע ותובנות בזמן אמת, וזה ירגיש מאוד מאוד טבעי ומתבקש.

תחום ה Internet of Things משנה את המציאות שלנו ללא הכר. IoT רלוונטי לכל תעשיה, מגזר ותהליך אישי ועסקי. ניטור וניתוח מתמיד של מידע המתאפשר היום בזכות מיליוני סנסורים, ענן, אנליטיקה דיגיטאלית, מזהה דפוסים שלא היינו ערים להם קודם לכן, מקצר לנו את תהליך קבלת ההחלטות, מציע ומבצע את הדבר המומלץ ביותר עבורי. ועל אף לא מעט אתגרים לא פתורים של התחום, הצדקתו הכלכלית ברורה וקלה להוכחה. אנו צופים בתקופה הקרובה כניסה רחבה של ארגונים לפרויקטי IoT, הן פרויקטים הפונים לקהל הרחב, אשר משדרגים את חווית הלקוח וחדשנות, והן פרויקטים ארגוניים Internet of Corporate Things-, אשר מייעלים תפעול, חוסכים העלויות ומציעים תהליכי עבודה שלא התאפשרו קודן לכן.

לעתים, אותו מידע סנסוריאלי, הוא בדיוק ה"חוליה החסרה" בהבנה של הצורך/ההקשר או במלים אחרות ה “Magic moment” בו נוכל לספק ערך ממשי עבור הלקוחות שלנו.

 

 

 

מהי ארכיטקטורת הדאטה של תחום השיווק וחויית לקוח?

מה זה Data Driven Marketing?

בפוסט הקודם התמקדנו בחוויית הלקוח הרציפה וניתחנו את השינוי שגורם לכולנו לדבר על דאטה ככלי המרכזי של כל הארגון: לראשונה, אנחנו מסוגלים להבין הרבה יותר טוב את אותה חוייה רציפה; אנו מסוגלים לנסות להתחקות אחרי המיקום של המותג שלנו בנקודות שונות בחוייה רציפה וארוכה זו, ולגבש דרכי פעולה יותר טובות בהתאם.

בפוסט הזה נתחיל להתקרב לשאלת ה"איך" – איך עושים את זה? לצורך כך, וכדי שניתן יהיה לעכל את הדבר הגדול הזה, אף על פי שברור כי מדובר במהלך רוחבי לכל אורך הארגון – אנחנו רוצים להתמקד במשימה של פונקציית השיווק בתוך המאמץ הארגוני הכולל הזה.

כולנו שמענו את המונח Data driven Marketing וכל הסימנים מראים שמונח זה ילווה אותנו בהמשך. בפוסט זה אנו רוצים לפרוט מה זה אומר להיות Data driven marketing? אבל לא נסתפק רק בתיאוריה אלא נציע מסגרת לפעולה אותה כל ארגון יכול לקחת כתשתית לדיון.

מה זה אומר "להיות Data driven marketing"?

אז נכון שמילת המפתח שעולה כל הזמן היא דאטה. יותר דאטה, המון דאטה, דאטה התנהגותי, דאטה ממקורות שונים. אין ספק שדאטה הוא השחור החדש של עולם השיווק, אבל הדאטה היא לא המטרה. המטרה היא להיות מסוגלים לקבל החלטות – לא רק יותר טובות – החלטות אופטימליות, מיטביות, בכל נקודת זמן ובכל החלטה יומיומית, בהסתמך על דאטה, כמובן.

כיום המאמץ העיקרי של חברות שרוצות להפוך להיות Data driven marketers הוא להיות מסוגלים "לכמת" התנהגויות של אנשים, להסיק מכך מה הם רוצים או ירצו, וכתוצאה מזה לקחת החלטות אופטימליות לגבי דרכי הפעולה. הרעיון הוא לעשות את זה כל הזמן, יום יום, המון החלטות קטנות, נקודתיות, כל אחת מהן הכי טובה שיכולה להיות בהתבסס על המידע שיש.

האם בארגון שלכם יש את המידע והכלים לקחת החלטות טובות? סביר להניח שהתשובה היא "לרוב, כן". עפ"י סקר של טרהדטה, 78% ממנהלי שיווק טוענים שהם כיום כבר עושים שימוש בדאטה בצורה סיסטמטית (לעומת 36% בלבד שענו בחיוב לשאלה זו רק לפני 3 שנים!).

אבל האם הארגון שלכם מקבל החלטות אופטימליות כל הזמן (לומד, בוחן, מבצע ניסויים, מבצע אופטימיזציה על כל החלטה)? זו בדיוק המשמעות של להיות Data driven, ובתחום השיווק וחויית הלקוח מסתבר שיש לזה ערך עצום.

מה מאפיין את אותן חברות שכן מצליחות להיות Data driven Marketers ולגזור מזה ערך מובהק לעומת התחרות שלהן?

Data driven Marketing 1

יש כאן אוסף של מאפיינים שחלקם מדבר על תרבות ארגונית, חלקם מדבר על שיטות העבודה שלהן, חלקן מדבר על רמת הבשלות שלהן, אבל שני המאפיינים החשובים ביותר לדעתנו הם אלה הקשורים בתרבות הארגון והעובדים בתוכו. המובילות העולמיות בתחום זה מתאפיינות בקיום גישה קולבורטיבית בארגון, הן כל הזמן חותרות למהלכים שישנו את תרבות ה Silos בארגון, מייצרות תהליכי קולבורציה הלכה למעשה, ועובדות בתצורה אג'ילית (צוותי עבודה מולטי-דיסציפלינריים, עבודה בתהליכים מאוד קצרים תוך יצירת כמה שיותר התנסויות וכד'). המאפיינים הנוספים שלהן הן יותר תוצאה של גישה תרבותית ארגונית זו: יש להן KPIs חדשים למדידת האפקטיביות של מהלכי השיווק (שונים מאוד מאלה הקיימים כיום אצל רוב החברות), הן בעלות "רמת בשלות דיגיטלית" גבוהה, יש להן אנשים בעלי מיומנויות שיווקיות-טכנולוגיות חדשות ("דרושים: מנתחי חויית לקוח") ועוד.

מהם הבונוסים של אותן חברות (מעבר לרווח הפיננסי, כמובן)?

Data driven Marketing 2.png

הבונוסים הם רבים ומשמעותיים. הן מסוגלות לתפור חוויות לקוח המשלבות בתוכן מה שאנחנו קוראים Magic moments (כי הן יודעות לצפות מתי נרצה שהן יספקו לנו ערך מסוים), הן יודעות למדוד בפועל את התרומה היחסית של כל "נגיעה" במסע הלקוח, בין אם מדובר בנגיעה דיגיטלית (יחסית קל) או פיזית (יותר מורכב) או החיבור בין שניהם (בינגו!), ולטייב את MIX הנגיעות הנכון עבור כל מקרה / לקוח/ סגמנט (Cross-Channel measurement attribution); הן מגדירות מחדש מה זה "סגמנט" וכל הזמן בוחנות את הגבולות של המונח הזה; הן יודעות להגדיר מיהו הלקוח האופטימלי שלהן ולחפש קהלים דומים (Audience amplification); הן משתמשות בשיטות ותהליכי אופטימיזציה ו A/B Testing בצורה שיטתית ועוד ועוד.

המשפט שיעבור להרבה אנשים בראש עכשיו הוא "איפה הארגונים האלה ואיפה הארגון שלנו"? אנחנו כ"כ לא שם, אפילו לא קרובים. והרי אין טעם לעשות כלום אם אין את הגישה הארגונית-תרבותית הנכונה!

אז זו אכן שאלה שאפשר להסתכל עליה משני היבטים בבחינת הביצה והתרנגולת: האחד, נכון – כשיש תרבות מתאימה, השימוש בטכנולוגיה יניב פירות וסיכויי ההצלחה להגיע לשם גדלים משמעותית. אבל מצד שני, מה קורה אם אין תרבות מתאימה? למה שאי פעם תהיה? אולי הדרך היא דווקא לייצר ניסיונות, אולי קטנים ונקודתיים, ודרך אותם ניסיונות להצית את התיאבון הארגוני?

אם כך, איך מתארגנים לגישה/תפיסה/אסטרטגיה הזו? מה לעשות קודם? ממה מתחילים?

מההתחלה, כמובן.

צעד 1: הגדרת מטרות ויעדים

לדעתנו ההתחלה צריכה להיות ההתכווננות. בסופו של דבר, כשאנחנו נימדד על ה"הצלחה" שלנו, איך אנחנו נגדיר אותה? איך היא תימדד? ואיך הצורה שבה אנחנו מודדים את עצמנו מיתרגמת לערך על פיו הארגון מודד את עצמו? במלים אחרות, מהם יעדי השיווק כיום, וכיצד הם מתחברים ליעדי הארגון?

למה זו ההתחלה? כי זה מכתיב את כל מה שבא אח"כ. החל באיזה דאטה אנחנו בכלל אוספים, כי אנחנו יודעים מה חשוב ומה לא, דרך ההחלטה בין 2 דרכי פעולה (או מיליון, לצורך העניין) כי אנחנו יודעים מה הפוקוס שלנו.

צעד 2: גיוס/גידול המיומנויות החדשות

לאחר השלב הראשוני של הגדרת היעדים, כשיש לנו סוג של מצפן, אפשר להתחיל להסתכל על הטאקטיקות בהוצאה לפועל של האסטרטגיה. השלב השני הוא גידול הדור העתידי שתצטרכו בשנים הקרובות, ובסקר הבא (Source: Spencer Stuart, Marketing Charts.com) אנחנו רואים בצורה מאוד ברורה את התמונה: התפקידים החשובים ביותר שאתם צריכים לאייש בארגונכם, בין אם על ידי גיוס חיצוני או על ידי טיפוח יכולות אלה בקרב העובדים הקיימים, וכנראה שילוב של שניהם גם יחד, מדברים – איך לא? – על תרבות. תרבות של חקירה, ערעור הקיים וחשיבה קריאטיבית, מוכוונות נתונים ואנליזה. העובדים בעלי הערך הרב ביותר יהיו אלה המצליחים לשלב את אותה חשיבה קריאטיביות עם יכולות אנליטיות והבנת עולם הנתונים.

New Marketing mix.png

צעד 3: גיבוש תהליכים תומכים

השלב הבא (שישתכלל עם הזמן, תוך כדי העשייה השוטפת) הוא גיבוש תהליכים תומכים. לדוגמה, אם דיברנו על להיות אג'יליים, לבצע ניסויים ובחינות כל הזמן ולעשות SCALE לרעיונות המוצלחים יותר, זה לא משהו שיכול להתרחש ללא אותם תהליכים תומכים. כמובן שלרוב הארגונים אין מבנה תהליכי תומך מתאים (סוג של 'מסלול מהיר' לבחינת מודלים ויוזמות חדשים) פשוט כי זה חדש לכולנו, ואז הכל נופל לתוך תהליכים מובנים, ארגוניים ומסורבלים. אלו אחת הנקודות המבדלות בין ארגוני Enterprise לארגונים "חדשים" יותר וארגוני סטארט-אפ שמקימים מראש תהליכי עבודה כאלה, ולכן יכולות לזוז הרבה יותר מהר ולבצע החלטות יומיומיות מונעות דאטה. אין ברירה אלא להקים תהליכים כאלה, בתחילה בדרך שתרגיש מעט מלאכותית (סוג של Startup wanna be בתוך הארגון) אך בהדרגה, זה יילך וירגיש יותר טבעי ויחלחל לתוך שיטות העבודה הקיימות.

צעד 4: בניית ארכיטקטורת הדאטה תומכת השיווק / חויית לקוח

אותה ארכיטקטורת דאטה תשרת בהמשך כמובן לא רק את תחום השיווק אלא את כל מי שעוסק בחויית הלקוח הרציפה (תיאורטית הארגון כולו). זהו תהליך שייבנה לאורך זמן, לבנה אחר לבנה, אך ההתחלה שלו צריכה להיבנות בראייה של איך הלבנים מתחברות אחת לשנייה בעתיד.

מהם הרכיבים של אותה ארכיטקטורת דאטה? מאיזה דאטה להתחיל?

הנטייה הכללית היא להתחיל עם הדאטה הקיים (עם עדיפות גבוהה לטיוב אותו דאטה! אכן, לא נצליח להתחמק מפרויקטי טיוב ואיכות נתונים בעתיד הקרוב), אצל חברות B2C זה יהיה ה 1st party data, אצל חברות אחרות יכול להיות שיתחילו דווקא עם מידע חיצוני, אך העיקר הוא שהדאטה הזה יהיה בעל ערך להבנת חלקים מתוך חויית הלקוח הרציפה. הטריק כאן הוא לראות איך בהמשך הלבנים ימשיכו להתחבר, ומה יהיה ה"דבק המאחד" ביניהן.

עצה מעשית – בהקשר של בחירת כלים כיום:

יש כיום לא מעט תהליכי בחירת כלים בעולם השיווק, בעיקר סביב כלי Marketing Automation וקמפיינים דיגיטליים. אנחנו רוצים להדגיש כאן נקודה חשובה עליה אנו חוזרים כל הזמן ללקוחות שלנו – הקריטריון החשוב ביותר בבחינת כלי טכנולוגיות שיווק כיום (במיוחד הפלטפורמות שמבטיחות להוות את ה DATA PLATFORM שלכם) – הוא פתיחות הדאטה שלהם. הדבר האחרון שתרצו הוא ליישם כלי בבחינת "גן סגור" שלא יודע לדבר עם מקורות מידע חיצוניים. למה זה כ"כ חשוב? הדבר היחיד הבטוח הוא שהתחום הזה ימשיך להשתנות כל הזמן. צריך לעשות כל מה שניתן כדי לבנות "תשתית" עמידה בפני שינויים, ואחד היסודות הבסיסיים בתשתית זו הנה היכולת להרחיב כל הזמן את ה CUSTOMER EXPERIENCE VIEW שלכם בעתיד (תזכרו שמה שהיום נתפס כ VIEW מאוד רחב, ייראה לנו מבט די צר בהמשך, כי כל הזמן יתווספו לנו עוד ועוד לבנים לתשתית הדאטה. רק תחשבו עד כמה "תמונת לקוח" שארגונים בנו לצורך ה-CRM לפני כחמש שנים, שאולי אז נתפסה כרחבה, נראית לנו מצומצמת כיום ולא נותנת מענה מספק). להערכתנו, פתיחות הדאטה מהווה קריטריון הרבה יותר חשוב מנושא ה Execution לערוצים השונים – נושא בו נוטים להתמקד יותר כי הוא הרבה יותר ברור ומובן (ואולי גם יותר סקסי ומעניין). כיצד מודדים "פתיחות דאטה"? קודם כל, על ידי בדיקה של ה APIs הקיימים שכבר יש לו לספקי מידע חיצוניים.

בפוסט הבא נציג את ארכיטקטורת הדאטה של עולם השיווק, על חמשת חלקיה השונים.

 

מה זה Data Driven Marketing?

למה אנחנו מדברים על DATA?

למה כל העולם כל כך עסוק בכל מה שקשור לדאטה? עידן המידע כבר כאן לא מעט זמן, אבל משום מה, אנחנו מוקפים ב-"Big Data", "Data Driven", "Chief Data Officer", "Data Analytics", ובעוד מגוון רחב של מונחים ממשפחת הדאטה. לדעתי, כל אלה אינם תוצאות או מטרות – אלה רק סימפטומים של שינוי משמעותי בדרך בה אנחנו עושים עסקים, ושל הזדמנות ענקית העומדת לפנינו.

לא ברור אם השינוי הוליד את ההזדמנות, או שמא הייתה זו ההזדמנות ששלחה אותנו לחשב מסלול מחדש. בכל מקרה, זה לא באמת חשוב מה בא קודם, אבל זה מאוד חשוב שנבין את מהות השינוי על מנת שנוכל להפיק מההזדמנות את המרב.

דרך טובה להבין שינויים משמעותיים היא להביט לאחור ולנסות לציר את השינוי על ציר הזמן. אז בואו נסתכל על הדרכים שבהן דאטה שירתה עסקים, בעשורים האחרונים.

אני חושב שדאטה עוזרת לנו בעסקים  מזה זמן רב. לפני העידן הממוחשב, עסקים השתמשו בניהול ספרים מסורתי. אני בטוח שהמידע, שנערך בקפדנות בספרים אלה, שירת את העסקים וסייע להם לדעת משהו על הלקוחות ועל הטרנזקציות שלהם. התנהלות זו קיבלה מימד נוסף כשמחשבים וגיליונות אלקטרוניים התווספו לארסנל הכלים. לאלה התווספו בסיסי הנתונים הגדולים שהובילו ליכולות בתחום ה-BI ולייעול מבוסס נתונים בקנה מידה ארגוני. התפתחויות אלה הובילו גם להצטרפותן של מערכות ה-ERP, שבפעם הראשונה אפשרו לנהל את הארגון באופן ממוחשב ולייעל את הפעילות במונחים תפעוליים. התרגום של היכולות האלה לעולמות השירות, בא לידי ביטוי בעידן ה-CRM. זהו שלב משמעותי בהתפתחות – שלב שבו העולם העסקי הבין שסוף סוף ניתן להפיק יותר, מהטרנזקציה עם לקוחות, על ידי שימוש במידע קיים, מתוך הארגון. איפשהו בתחילת שנות ה-2000, באה גוגל ולימדה אותנו שאנחנו יכולים להפיק יותר תועלת מהפרסום שלנו אם אנחנו משתמשים במידע קונטקסטואלי. הגילוי הזה מיהר להתפשט לתחום עצום מימדים, שקיבל את השם Adtech. אלפי חברות, ברחבי העולם, שפיתחו מוצרים ויכולות, שבבסיס כולם דבר אחד: למנף את הדאטה, הרבה דאטה, ביג דאטה, להתאמה יותר מדויקת של מסרים שיווקיים לאנשים. משם הדרך קצרה להרחבה לעולם השיווקי הרחב – כך התעוררה תעשיית ה-Martech. זהו אוסף של טכנלוגיות ופתרונות שעניינם לאפשר לנו לנהל את מערך הכלים השיווקיים שלנו בצורה יעילה, תוך התייחסות לקשרי הגומלין שבין הערוצים השונים.

yoav1

ההיסטוריה, המובאת לעיל, מביאה אותנו לנקודת הזמן הנוכחית, המסומנת באילוסטרציה באותיות CCE, בגלל שמה שמייחד אותה, לדעתי, זה נושא ה- Continuous Customer Experience  (חוויית הלקוח הרציפה). אסור לטעות ולחשוב שמדובר, שוב, בניהול ממשקי משתמש ו/או בעיצוב נקודות מגע עם לקוחות. מדובר פה בעניין הרבה יותר גדול. תנו לי להסביר:

מקומו של מותג בחייו של אדם כלשהו, הוא קטן מאוד, יחסית לכל הדברים האחראים שיש לאדם בחיים. עם זאת, אם נתמקד בחלק הקטן הזה, נגלה שהוא עצמו מורכב מהרבה מאוד מרכיבים. כל נקודת מפגש של אדם עם משהו שקשור, בדרך כזו או אחרת, למותג, היא מרכיב אחד בסך הקשר של אדם עם מותג. שלט חוצות של המותג, שיחה עם נציג שירות, שיחת סלון עם חברים בנושא הקשור למותג, עמידה בתור בסניף… כל אלה הם המרכיבים של הקשר הזה. אם נקרא לקשר של אדם עם מותג – "חוויית הלקוח", אז ניתן גם להתייחס לכל נקודות המגע, כמקטעים ברצף, שנקרא "חוויית הלקוח הרציפה".

מערכת היחסים שבין אדם למותג מתקיימת רק כי שני הצדדים למערכת היחסים הזאת, מעוניינים להפיק איזושהי תועלת. כאן, אני רוצה להפנות אתכם לחוק ה-Win Win, בניסוח שלי:

"שתי ישויות, יפיקו את הערך המקסימאלי מטרנזקציה ביניהן, רק אם הערך הנתפס של הטרנזקציה, עבור כל אחד מהצדדים, יהיה מקסימאלי."

זה אומר, שבמערכת היחסים שבין אדם למותג, הדרך היחידה למקסם את פונקציית המטרה של הארגון, היא על ידי מיקסום פונקציית המטרה של האדם. כלומר, אם הארגון מגדיר את המטרות שלו במונחים של הכנסות ואילו האדם מגדיר את התועלת שלו במונחים של מחיר, דימוי עצמי, שירות וכו', אז הדרך היחידה למקסם את ההכנסות היא על ידי מיקסום הערך הנתפס של האדם, בכל הפרמטרים, כל הזמן.

זה לא משהו שלא ידענו קודם. ברור שכשאדם בא לקנות חולצה, אנחנו דואגים שהיא תהיה אופנתית, שיהיה מבחר, שיהיו מידות, שהמוכרנים יהיו מצוינים, שהמחיר יהיה אטרקטיווי. אבל זוהי חוויה אחת. מה עם הרצף של החוויות? מה אם באותו ערב יש כתבה בחדשות על כך שהחברה שמוכרת את החולצה, מתייחסת לא יפה לעובדים שלה? מה אם הקונה פתאום רואה את אותה חולצה, במקום אחר, במחיר יותר טוב? אז אולי הוא לא ישוב לקנות חולצות של המותג הזה. ואז ברור, שהמותג לא הפיק את הערך המקסימאלי ממערכת היחסים שלו עם האדם הזה.

אז בעצם, מדובר במיקסום הערך מסך החוויות שמרכיבות את הרצף, על מנת להפיק ממערכת היחסים, את הערך הגדול ביותר, למשך כל חיי הלקוח. אז עכשיו ניתן לנסח חוק, שנובע מהחוק הכללי:

ארגון, יצליח להפיק את ה-Lifetime Value המקסימאלי, ממערכת יחסים עם צרכן, רק אם הוא יצליח לגרום לערך הנתפס שמפיק הצרכן, מכל המקטע בחוויית הלקוח שלו, להיות מקסימאלי.

זאת הסיבה, שדאטה נעשה נושא כל כך מעניין. ההתפתחות האדירה שחלה בתחום טכנולוגיות השיווק בזמן האחרון, מביאה אותנו למקום שבו אנחנו יכולים להתחיל לנהל ברצינות את חוויית הלקוח הרציפה. על ידי איסוף מידע, אחסון מידע, שימוש במגוון מקורות מידע, פנימיים וחיצוניים, וזיהוי הלקוח ופעילותו, על פני הרצף, ניתן להתחבר לחוויה שלו, ברזולוציה הרבה יותר גבוהה ממה שהיה ניתן בעבר.

המטרה שצריכה להיות לנו מול העיניים, היא לדאוג לכך, שעבור כל אחד מלקוחותינו (ולקוחותינו הפוטנציאליים), חוויית הלקוח כולה (וכל מקטע שלה בנפרד), תהיה:

• מצוינת • קונסיסטנטית • מדויקת • מתוזמנת • יוצאת דופן • בקו המותג • פשוטה • מותאמת • גמישה • כיפית

איך עושים את זה? שאלה גדולה עם תשובה ארוכה. אני חושב שמה שצריך לשאול, זה "איך מתחילים?"

אז ההצעה שלי היא להתחיל מההתחלה. וההתחלה במקרה הזה היא באסטרטגיית הדאטה של הארגון. להלן הצעה לאבנים הראשונות בשביל חוויית הלקוח הרציפה:

yoav2

  1. מפו את חיי הלקוחות שלכם (בלי קשר לעולמכם).
  2. מצאו מה חלקכם בחיים שלהם.
  3. הגדירו את חוויית הלקוח הרציפה כרצף של נקודות מידע.
  4. תרגמו כל נקודת מידע כזאת לפרמטרים.
  5. צרו תהליך איסוף לכל פרמטר.
  6. בחרו כלי, או מערך כלים, שמאפשרים התנהלות עם כל סוגי המידע.
  7. צרו תהליכים שבעזרתם כולם ישתמשו באותו בסיס נתונים.

בהצלחה 🙂

*הפוסט נכתב ע"י יואב פרידור

 

 

 

למה אנחנו מדברים על DATA?

חלק ג' בסדרת פוסטים בנושא טכנולוגיות שיווקיות: מהן העוצמות שטכנולוגיה מביאה כיום לתוך יוזמות השיווק?

 

אחת מהשאלות אשר מנהלי שיווק צריכים לבחון מחדש כל הזמן היא: עד כמה אנחנו יכולים להכיר את הצרכן, כדי להיות מסוגלים לספק לו/ה את המסר הנכון ביותר, בזמן הנכון ביותר: אדם נכון, מסר נכון, זמן נכון. התשובה לשאלה זו תשליך משמעות על נושא הסגמנטציות (אשר משתנה מהותית); צורת המדידה (מ"איים" למערכת יחסים רציפה); ואפילו ההגדרה ל"מה זה סגמנט"? (אני לא אותו ה"אדם" מבחינת ההעדפות שלי כל הזמן, אני יכול להיות 50 סגמנטים שונים במשך 24 שעות)…

תעשיית הפרסום כבר עברה מהפכת אוטומציה וכיום שוק ה Programmatic advertising משנה את התמונה, ולמעשה הפך לברירת המחדל שלהערכתנו תהווה הפלטפורמה לשיווק בכל סוגי המדיה השונים (ולא רק Display ads / באנרים). האם זה טוב או רע? מבחינת אפקטיביות הקמפיינים, זה רק טוב. יכולות הטירגוט של קהל היעד משתפרות מאוד, והפרסום הופך להיות יותר ויותר חכם, ועל הדרך מספק לנו המון תובנות לגבי אנשים, העדפות, אפקטיביות, שימוש במדיה, ועוד הרבה תובנות נוספות שניתן לייצא ממנה, אם רק יודעים איך.

מה טומן העתיד לפלטפורמות פרוגרמטיק? אופטימיזציה, תהליכים יותר חכמים. לא רק אוטומציה של תהליכים (ובדרך ויתור על מתווכים אנושיים) אלא גם שימוש באלגוריתמיקה מתקדמת המועצמת על ידי יכולות של אינטיליגנציה מלאכותית ובתוך כך Machine Learning. לא מדובר כאן רק על אוטומציה של תהליך קיים, אלא על הפיכה של אותו תהליך ליותר שקוף, מדיד וחכם.

התפתחויות נוספות הן בתחום ה Cross-device (מובייל/דסקטופ, וידיאו/תוכן סטטי) והיכולת לזהות שמדובר באותו האדם, יכולות ניהול קהלים יותר טובה (בין אם ממידע פנים ארגוני, מידע משותפים או מספקי צד ג'), אבל ההתקדמות המשמעותית ביותר הנה שפלטפורמות אלה יהפכו להיות ה HUB המרכזי של ארגונים לצריכה ושימוש במדיה. וזה דבר גדול, שיצריך הגדרה מחדש של יחסי הארגון עם סוכנויות פרסום ומדיה ויגדיר מחדש את מאזן הכוחות. הרבה מהכוח יעבור פנימה, לתוך הארגון, שיהיה – אולי לראשונה – הבעלים של הדאטה הפרסומי שלו, ובעל השליטה עם יכולת ניהול מרכזית.

האם Ad blocking משנים תמונת הפרסום?

לאחרונה אנחנו נוכחים לדעת עד כמה אנשים לא אוהבים פרסומות, והם צועקים את זה באופן ברור. האפשרות הטכנולוגית כיום לחסום פרסומות ממחישה זאת: 20% ממשתמשי דסקטופ, 25% ממשתמשי מובייל, ו-40% גידול בשימוש ב ad blockers משנה שעברה. התוצאה: 14% מתקציבי פרסום נחסמו בשנה החולפת – המון כסף שהלך לפח.

וזה לא ממגיע מ"שום מקום". אנשים אכן רוצים שחברות יכירו אותם יותר טוב, ושיספקו להם תכנים מוצרים ושירותים רלוונטיים, אך המצב כיום הפך להיות "מערב פרוע", ללא חוקים, רגולציה וללא שליטה של הצרכן.

אנחנו מאמינים שכל זה יוביל לזהות דיגיטלית, כפי שכבר קיימת כיום לגוגל, פייסבוק וכד', אבל אחת אחידה ומשותפת לכל פלטפורמות הפרסום. לצרכן עצמו תהיה יכולת לשלוט על רמת הפרטיות בו הוא/היא מעוניינים, איזה מידע הוא מאפשר לאסוף לגביו ואיזה לא. (כיום קיימות תכנות פרטיות לכך, כמו Ghostery  שמספקת תכנת user tracking blocking ומאפשרת למשתמש לקבוע בעצמו את רמת הprivacy שלו.

השפעות נוספות של תופעת חוסמי הפרסום הן השקעה גבוהה ב content marketing ובפרסום נייטיב, יותר השקעה בשיווק ב earned media. הדבר יצריך יותר יצירתיות מחברות ומותגים.

כמו כן, במקביל יצמחו ערוצי פרסום נוספים כמו לדוגמה מסייעים אישיים (personal assistants) דוגמת סירי, קורטנה, אלכסה – המסייעים לנו בצורה אינטראקטיבית ועל הדרך יספקו לנו תוכן פרסומי, Search 2.0.

איך אנו מוודאים שהמסר הנכון יגיע ל"אדם הנכון"? בנושא הסגמנטציה יש מפגש של התפתחות ציפיות הצרכנים מחד, והתקדמות טכנולוגית מאידך, שהובילו למצב בו כיום, הסתמכות על סגמנטציה בלבד, כבר אינה מספקת. זה ממש לא מספיק לדעת שמדובר בגבר בסביבות גיל 30 שאוהב בישול מולקולרי, כדאי גם לדעת שלאותו גבר יש זמן חופשי, אירוע כמו יום הולדת ובסופו של דבר להבין האם זה ה"רגע המתאים" להציע לו סדנת בישול מולקולרי. מציאת ה Magic moment או right moment הנו טריקי וחמקמק אבל הוא זה שעושה את כל ההבדל, כמו שאדם סינגולדה, מייסד אאוטבריין, אמר לאחרונה – אני אדם שונה בשעות הבוקר ובשעות הערב, מבחינת ההעדפות והרצונות שלי. אחוזי ההצלחה (על פי מחקר של SAS) עולים בהתאמה – כאשר “Convenient marketing” (שיווק מותאם לקהל המטרה, נשען על סגמנטיות) מקבל כ 20% אחוזי "הצלחה" (לא נתעכב כרגע על מה זו בדיוק הצלחה במחקר זה, מה שמעניין כאן הוא היחסיות), “Appropriate marketing” (שיווק המתחשב בממד הזמן המתאים – right moment marketing) יקבל 40% הצלחה. הבעיה היא שכיום, רוב המודעות הפרסומיות שאנו רואים לא שייכות לא לקטגוריה הראשונה ולא לשנייה, אלא ל “Intrusive marketing” (אין סגמנטציות, אותו המסר לכולם, ללא כל התייחסות לממד הזמן המתאים). אגב, אחוזי ההצלחה כאן – בסביבות 2%.

המרוץ לפלטפורמת השיווק כבר החל

אפשר רק להסתכל לאחור על רצף הרכישות של ספקי טכנולוגיה בשנה האחרונה בתחום ה MarTech ולהבין שהמרוץ לאספקת פלטפורמת שיווק (Marketing hub/marketing cloud) כבר החל, ספקים כמו Adobe, אורקל, יבמ, Salesforce, SAS, כולן מעוניינות להיות אותו Hub והן משקיעות בכך סכומי עתק.

גם חברות ה AdTech מצטרפות למירוץ,וחברות כמו גוגל, פייסבוק, Aol, Yahoo, בונות את פלטפורמות העתיד שלהן, כולן רוצות לספק לנו את אותו Hub שליטה מרכזי.

ואכן, תחום ה MarTech מתחיל לפגוש את תחום ה AdTech ,טכנולוגיות הפרסום והשיווק מתחילות להתאחד באותן פלטפורמות ולהציע לנו יכולות שעד כה לא נראו כלל אפשריות. התוצאה של שוק "מאוחד" זה, בשם המאוד הולם לדעתנו: MadTech!

ה-CMOs? הם גם כן במירוץ לאספקת אותה חויית לקוח אופטימלית, להצטייד בכלים ובשיטות המתאימים, בכ"א מוכן ומיומן לאותו שינוי. בשנים הקרובות עליהם לייצר פלטפורמת שיווק עמידה בפני שינויים תכופים, להתעדכן כל הזמן לגבי טרנדים שיווקיים וטכנולוגיים, לעבוד בשיתוף פעולה מלא עם IT, להיערך למרתון ארוך מצויידים בחשיבה אסטרטגית, תוך ריצה של ספרינטים קצרים והצגת ROI בתצורת נצחונות קטנים כל הזמן.

ניתן לצפות במצגת המלאה כאן.

כותבי המאמר הנם חברי צוות המחקר של STKI for CMOs: עינת שמעוני, גלית פיין ויואב פרידור.

 

 

 

 

חלק ג' בסדרת פוסטים בנושא טכנולוגיות שיווקיות: מהן העוצמות שטכנולוגיה מביאה כיום לתוך יוזמות השיווק?