מה מעכב את תחום הבוטים בישראל?

בזמן שבשוק הבינלאומי תחום הבוטים מתחיל לפרוח, בישראל יש הרבה מאוד ניסיונות, בחינת יכולות, פיילוטים ומאמצים. אך מתחיל להיווצר פער משמעותי לרעת השוק המקומי. מי שהחל לעסוק בתחום הבוטים ה"נוצץ" מהר מאוד מגיע לשני הגורמים המעכבים את מימושו בישראל: ענן, ועברית.
* הערה: "בוט" הנו מונח גמיש, יש כאלו שיטענו שבוט יכול להיות תכנית מאוד פשוטה מבוססת חוקים (כשלקוח אומר X -> תענה Y), יש כאלה שיטענו שבוט "אמתי" הוא כזה המציג יכולת לנהל שיחה חופשית עם מכונה שיודעת להבין משפט, לפרק אותו למלות מפתח, לחלץ כוונה, לחולל תהליך בהתאם, להתחבר למערכות שונות, לשלוף את המידע ולהחזיר אותו לשואל תוך ניהול "שיחה" עם כל כללי השיחה וניהול הדיאלוג.
מבחינתנו, פלטפורמת בוטים מספקת 3 דברים: ניהול דיאלוג, הבנת כוונה, וחילול APIs.

הגורם הראשון המעכב את תחום הבוטים בישראל – הענן:
תחום הבוטים נשען על טכנולוגיות מאפשרות, שעוסקות בעיבוד דאטה, ניתוח טקסט, יכולות AI, ML, NLP, ושירותים כדוגמת ניתוח כוונה (Intent), ניתוח סנטימנט, מילונים, ועוד שירותים שאיכותם עולה ביחס ישיר לכמות הדאטה הקיימת. במלים פשוטות, היכולות ה"מתקדמות" של מוצרי הפלטפורמות נמצאות בענן.
בישראל אנו נמצאים בעיכוב משמעותי באימוץ ענן ציבורי (מוערך בכ-4 שנים). שתי תעשיות עיקריות שנתקלות בחסם זה ודווקא הן מהוות מועמדות מצוינות להפקת ערך עסקי משמעותי מעולם הבוטים, הן תעשיית הרפואה, וחברות בתחום השירותים הפיננסים. כתוצאה מכך, הפרויקטים שאנו רואים כיום בתעשיות אלה בישראל הם או כאלה המוגבלים לתחום בו נושא הענן אינו מהותי (לדוגמה, הזמנת פגישה – ללא פרטים מזהים/בירור פרטים כלליים/קבלת מידע רוחבי שאינו רלוונטי לי כלקוח), או לחלופין הולכים למודל של יישום מקומי On premise. כתוצאה מהיישום המקומי, לא נהנים מהיתרונות הטכנולוגיים שנמצאים בענן. כך או כך, ארגונים מפסידים חלק ניכר מהיכולות הפונקציונאליות.

הגורם השני המעכב את תחום הבוטים בישראל – עברית:
אין ספק שזהו הגורם העיקרי שמעכב את היישומים המקומיים. זה לא אומר שלא ניתן ליישם בוט בעברית, זה רק אומר שצריך לעבוד הרבה יותר קשה לצורך זה, לבנות הרבה מהחוקה ב NLP, לבנות מילונים נוספים, וגם "לוותר" על חלק מהיכולות שהיינו יכולים לקבל באנגלית (ניתוח סנטימנט היא הדוגמה הבולטת). אחד מהתחומים בו מתחיל להיווצר פער משמעותי הוא נושא ה Voice, כשחברות בינלאומיות מתחילות להוציא יישומים מבוססי Voice על גבי פלטפורמות כמו אמאזון (אלקסה), גוגל ומיקרוסופט, בישראל אין עדיין על מה לדבר בהקשר הזה…

סיום מעט אופטימי: אין לנו ספק שבסופו של דבר תהיה תמיכה בעברית בשוק, לא ברור באיזו רמה. מצד שני, ארגונים רוצים להתחיל להתנסות בעיקר על מנת ללמוד מהו הערך המתאים אותו ניתן להציג ללקוחות ולארגון, שכן לתחום הבוטים יש פוטנציאל רב בשיפור חויית הלקוח ובחיסכון עלויות תפעול, וחבל לפספס. אך במסגרת הפיילוטים והפרויקטים שמתחילים כבר לצאת כרגע לשוק, כדאי להכיר במגבלות אלה, לבחור שותפים שיידעו לחפות על הפער, ולנסות לייצר קואליציות של רכיבי בוטים שונים כדי לייצר את הפתרון המתאים. אנו מאמינים שהשאיפה כן צריכה להיות ליצירת מנגנון לומד מבוסס Machine Learning, ולנסות למנף את הדאטה הקיימת ממוצרי צ'אטים קיימים/מקורות מידע רלוונטים אחרים.

מה מעכב את תחום הבוטים בישראל?

האם בוטים הם "הדבר הבא" ב- Customer engagement?

האם Bots הם "הדבר הבא" באינטראקציה עם לקוחות?

"בוטים" (Messaging bots) הצליחו למשוך את תשומת לבה של התעשיה כולה כתוצאה משתי התפתחויות מקבילות, ובעיקר בשל החיבור ביניהן בנקודה זו בזמן:

  1. העובדה שרובנו – כאנשים/צרכנים/עובדים/חברים/בני משפחה – התרגלנו לתקשר באמצעות פלטפורמות messaging. השימוש בפלטפורמות אלו גם כצרכנים אל מול ספקי השירות שלנו נראית טבעית ומתבקשת, בין אם מדובר בבנק, קופת החולים, משרד ממשלתי, הזמנת מוצר או קבלת מידע.
  2. התפתחויות טכנולוגיות בעולם הבינה המלאכותית (AI) ובתוכו בענפי ה- ML וה–NLP, הביאו לפריצת דרך באופן בו מערכות מסוגלות להבין דברים 'מורכבים', כמו טקסט חופשי, כוונה או רצון. אולם חשוב גם להדגיש כי במובן זה – ייקח כנראה עוד זמן עד שטכנולוגיות אלה יבשילו משמעותית לכדי אפשור שיחה "טבעית".
  3. עייפות החומר בכל הנוגע לאפליקציות מובייל. הנתון המטריד הוא שכיום הסיכוי שאתם תצליחו לשכנע את הלקוחות שלכם להוריד אפליקציה חדשה מאוד נמוך (65% ממשתמשים כלל אינם מורידים יותר אפליקציות חדשות, ורובנו עושים שימוש ב-5 אפליקציות בלבד מבין העשרות המותקנות לנו על המכשיר).

האם Bots הם ה"דבר הבא" ב-Engagement של ארגונים אל מול לקוחותיהם? האם הם יחליפו ערוצים קיימים אחרים? האם יהוו "שכבת על" מעל ערוצים אחרים (אולי כתחליף לאפליקציות המובייל בתצורתן העדכנית כיום)?

ומהם תחומי היישום הרלוונטיים ביותר ל- bots? האם ל-e-Commerce/ אספקת מידע/ שירות/ אחר?

פחות מעניין לדבר על בוטים, ויותר מעניין לדבר על פלטפורמות.

המעבר הוא אינו מ"אפליקציות" ל"בוטים". המעבר הוא ל"פלטפורמות" ולמקומות שהן לוקחות אותנו אליהן (בין פלטפורמות אלה ניתן למנות את אמאזון, פייסבוק, מיקרוסופט, IBM, SLACK, KIK, WECHAT, TELEGRAM וכו'). פלטפורמות הן אלה המרגילות אותנו לעבוד בתצורת עבודה מסוימת (מי היה מאמין שיום אחר נעדיף לתקשר באמצעות messaging יותר מאשר שיחות קוליות?) ואם כיום messaging הנה צורת ההתקשרות המועדפת, בעתיד כנראה שהממשק יהיה Voice ובהמשך… מי יודע?

אבל הכוח, במובן הזה, הוא בידי ספקי הפלטפורמות. הן אלה אשר יגדירו את סטנדרט הממשק החדש, והם אלה שמחזיקים את הדאטה על האנשים שחיים בתוכם. ברור שרצון חברות וספקי שירותים כיום הנו לפגוש את הלקוחות במקום הנוח להם, תוך מינימום מאמץ ומקסימום נוחות של לקוחותיהם. אם כיום הלקוח משתמש במסנג'ר/ווטסאפ/סקייפ/וכו' כדי לתקשר עם העולם, הכי טבעי שנתחבר לשם.

כן, אבל…

צריך להודות על האמת המעט מאכזבת: רוב הבוטים הקיימים כיום הם די טיפשים. כשאנחנו מסתכלים סביב ומנסים למצוא את ה KILLER BOTS שבאמת סיפקו חוייה ייחודית, לרוב לא ניפול מהכסא. ישנם כמה מוצלחים, המון לא מוצלחים, הרבה שמתחזים ל"אני ממש כמו בנאדם מגניב, שאל אותי כל דבר" (האכזבה מגיעה מאוד מהר), והרבה מאוד בוטים שהלכו על העניין הגימיקי בלבד.

אז נכון – אנחנו נמצאים בגרסה 0.01 של עולם הבוטים, שעוד ישתנה, יתהפך,יקרוס, יצמח בחזרה, ולבסוף ימצא את מקומו כ ENABLER לאספקת ערך אמיתי ללקוחות שלנו.

עוד סממן להתחלתיות היא העובדה שלפייסבוק אין עדיין Bot-Store, וזה כמובן במכוון. פייסבוק רק הכריזה באפריל על פתיחת הפלטפורמה למפתחים, ורצתה לתת להם להתנסות, לראות מה יוצא, לתת לזה קצת זמן… התחלה.

אחנו נמצאים ב PEAK של ההייפ, מכאן בוודאי שנתרסק מעט, אבל לאחר ההתפכחות סביר שנתחיל לראות דברים יפים שעונים באמת על צורך אמתי.

bots-hype

מהם האתגרים הקיימים כיום בתחום הבוטים?

הבעיות הן רבות, וכוללות בעיות ממשק – שפשוט אינו סקסי מספיק. אם מסתכלים על ה-UI באפליקציות מובייל ובווב כיום לעומת ממשק המסרים הפשטני שמכיל שאלה/תשובה, אפשר להבין את הלחץ של מומחי UI כיום. אבל ברור שגם תחום זה ישתנה וישתכלל, כפתורים מיוחדים/ממשקים מותאמי מסג'ינג מתחילים לצוץ, ומפתחי UI כיום פשוט לומדים מדיום חדש;

ברמת ה UX בוודאי שישנה בעיה (כאמור, בוטים לא אפקטיביים, לא חכמים מספיק, שלא מבינים INTENT ומתסכלים את הלקוח);

חוסר בשלות של טכנולוגיות בינה מלאכותית AI, ובתוך כך נושא ה NLP (עיבוד שפה) – במיוחד בעברית!

theissues with bots today.png

נכון, רוב הבוטים כיום הם טיפשים. אבל אנחנו סולחים להם כי הם מלאים בפוטנציאל.

מהם הערך וההבטחה הגדולה שבוטים יכולים להביא לנושא חויית הלקוח? לדעתנו, הערך הוא משמעותי מדי מכדי להתעלם מהם, על אף החסרונות וחוסר הבשלות.

  1. תחילה, האפשרות לקיים אינטראקציות ש"מרגישות" יותר פרסונליות ושיחתיות (לדוגמה, נושא ה eCommerce או כפי שהוא מתחיל להיקרא: Conversational Commerce – הצרכן משוחח עם המותג/סטייליסט/יועץ שמכיר אותו ויודע מה להציע לו). מעבר לכך, כשאנחנו מתחברים לפלטפורמות שצרכנים חיים בה – יש לנו מראש כבר מידע בעל ערך על אותו הצרכן, שיכול לאפשר לנו להתאים את השיחה לאותו הצרכן – פרסונליזציה שמתאפשרת תיאורטית כבר מהרגע הראשון, עוד לפני שהתחלנו לצבור מידע.
  2. בוטים הם כלי אפקטיבי מאוד למיכון של משימות פשוטות שחוזרות על עצמן. כמובן שהתוצאה צריכה להיות אפקטיבית והמדד הטוב ביותר הוא מדד הזמן – האם חסכנו זמן ללקוח? מסתבר שלקוחות מאוד מעריכים חיסכון בזמן, ובזה בוטים מצטיינים. בוטים צריכים לאפשר ללקוחות To get stuff done, מהר ופשוט.
  3. באופן תיאורטי – האינטראקציות עשויות להפוך להיות יותר חכמות – וכאן צריך לסייג. כשאנחנו מחברים את נושא הבינה המלאכותית, ועושים שימוש בכל הדאטה שאנחנו צוברים כתוצאה מהרבה אינטראקציות, אנחנו בהחלט מצפים לראות את האינטראקציות משתפרות ולומדות מניסויי העבר. למה הסיוג? בגלל שטכנולוגיות AI/ML עדיין לא במאה אחוז מאפשרות לנו את זה, עם כל ההתפחות האדירה בתחום זה, יש עדיין דרך ארוכה.

אם לסכם את הערך שבוטים יכולים להביא לנושא חויית הלקוח, זה יצירת אותם Magic moments (שניסינו ליצור באמצעות אפליקציות מובייל) – להבין מתי הזמן הנכון שאותו הלקוח צריך אותנו? איך לתת לו מה שהוא צריך? לייצר עבורו חוייה שהיא מה שפורסטר קוראים Zero-friction במינימום מאמץ מצידו. המונח 'מינימום מאמץ' כל הזמן מוגדר מחדש, דוגמת פיצה דומינוס שהצליחה לצמצם מאמץ זה לכדי אימוג'י אחד בודד של פיצה!

 what-is-their-big-promise

אז מה עושים בינתיים?

אתכם כך. אם הכלי יעיל, זה לא ייקח זמן רב. אבל גם אתם תלמדו מהאינטראקציות מולם. בנוסף, לוקח זמן עד שהרעיון שוקע בתוך הארגון, והרעיונות (הטובים!) של מה לעשות עם זה כדי לשפר את חיי הלקוחות יגיעו כנראה רק אחרי משחקים ונסיונות.

איזה סוגי בוטים קיימים?

3 הסוגים העיקריים:

  1. אין ספק שהיישום העיקרי כיום הוא בעולם ה- eCommerce. הבוטים מסייעים לייצר ecommerce שיחתי, מונח אותו טבע כריס מסינה של UBER במאמר זה. אינסוף דוגמאות, החל מהזמנת מונית UBER, דרך הזמנת פרחים 1-800-flowers, ומשלוחי אוכל (הפיצות לגמרי נכבשו על ידי בוטים), הזמנת טיסות ומלונות ועוד…
  2. בוטים של תוכן/חדשות. דוגמאות: CNN, Business Insider, וה – New York Times שמספקת לכתבים את Bloosom – בוט שממליץ לכתבים על מאמרים בעלי סיכוי גבוה להפוך להיות ויראליים.
  3. בוטים שמספקים את מוצר/שירות החברה ב Zero-friction/ magic moment. כאן מדובר יותר על בוטים שהם transactional, שמספקים את מהות המוצר/שירות עצמם, שהחברה מציעה, תוך תמיכה ב WORKFLOW השלם, ב Zero-friction – מינימום מאמץ מצד הלקוח. קחו לדוגמה את בוט ה "magic moment" של KLM:

klm-bot

כמה חוקים לבניית בוטים טובים (תוך התחשבות ברמת בשלות השוק):

  • בוטים טובים חיים בתוך פלטפורמה מוכרת – לכו להיכן שהלקוח שלכם חי, והפלטפורמה המתאימה לסוג השירות שאתם מספקים
  • בוטים טובים הם קונטקסטואלים – מבוססי הקשר (ולזה צריך דאטה!!!)
  • בוטים טובים הם מאוד מאוד אפקטיביים. תחשבו איך אתם יכולים להקל על חיי הלקוח שלכם (חיסכון בזמן זו תועלת עצומה)
  • בוטים טובים מבנים דברים שאנשים בכל מקרה כבר עושים היום (חיפשו מטלות שחוזרות על עצמן, שניתן לייעל/לקצר/לשפר אותן)
  • בוטים טובים תפרו מראש את התהליך, ללא הרבה מקום לסטייה ממנו, כדי להימנע מנקודות החלטה (בהתחשב במצב בשלות השוק כרגע, זוהי נקודה מאוד חשובה)
  • בוטים טובים הנם בעלי "קצוות סגורים"
  • בוטים טובים מאוד ברורים לגבי המגבלות שלכם (אם אנשים ירגישו שהבוט שלכם יכול לדבר על כל נושא, האם ישאלו אותו כל שאלה)
  • בוטים טובים נבנים סביב רעיון ה Magic moment / Zero-Friction

בקצרה, כדאי להסתכל על בוטים כ ENABLER המסייע ללקוחות שלנו לבצע דברים:

TO GET STUFF DONE

 הבעיה עם בוטים בעברית

למרות כל הנסיונות והרצון הטוב לפתח יכולות NLP בעברית, אולי תמצית הבעיה היא – שהבעיה שלנו פשוט לא כ"כ בעייתית עבור שאר העולם. כמה אנשים בעולם מדברים עברית? מעט מאוד. התוצאה: אין מספיק תמריץ של השחקנים הגדולים לפתח, תוסיפו לזה את המורכבות של השפה העברית (מאוד, מאוד מורכב הסיפור) וקיבלנו בעיה שכנראה לא הולכת להיעלם בזמן הקרוב מאוד. אז נכון שתולים תקוות בהתקדמות הבינה המלאכותית, ובמיוחד רשתות הנוירונים וה Deep Learning שיציעו פריצת דרך של ממש, אבל על פי כל המומחים עמם אני שוחחתי – הנחת המוצא היא שכרגע NLP לא מספיק מתקדם בעולם על מנת לקיים שיחה "טבעית לגמרי" עם בוט, ובוודאי שלא בעברית. אורי אליאבייב כתב על נושא הNLP בעברית פוסט מרתק ומקיף בבלוג על ML (המרתק אף הוא) – ממליצה לקרוא.

מספר דוגמאות של בוטים מעניינים ואפקטיביים בישראל שכבר היום מספקים ערך פרקטי ללקוחות הארגונים שמציעים אותם, ועובדים בעברית:

  1. הבוט הממוקד של בנק לאומי במסנג'ר, המסייע באיתור סניפים, עוזר להבין היכן הסניף הקרוב אליי, מהן שעות הפתיחה, ומהם השירותים המוצעים שם.
  2. הבוט של פרטנר למידע על חבילות הגלישה, המאפשר ללקוחות לדעת מה היקף חבילת הגלישה שהם צרכו עד כה, כמה נותר להם לגלוש בחבילה ומועד חידוש חבילת הגלישה, הבוט הנונ במסנג'ר, כאשר ניתן לעבור לנציג אנושי בכל עת.
  3. הבוט של – הזכיין של UPS בישראל, גם הוא במסנג'ר, המאפשר ללקוחות לקבל מידע ולשאול שאלות על שטר המטען שלהם.
  4. "הבוט של תותית" (חלק ממהלך שיווקי דיגיטלי) מבית חוגלה-קימברלי עבור מותג Kotex, המספק במסנג'ר מידע לקהל יעד ספציפי (במקרה הזה צעירות לקראת גיוס) דרך שיחה עם "תותית".
  5. הבוט של השף הלבן – המתאים לאנשים מתכונים לפי העדפות ותנאים שונים
  6. מה שמסתמן כתחום יישום פופלרי ביותר – גם בישראל יש כבר בוטים פועלים להזמנות משלוחי אוכל, כמו לדוגמה זה של Tictuk.

מה משותף לדוגמאות האלה? ממוקדים במשימה ספציפית ומתוחמת/קהל יעד ספציפי. עונה על צורך דומה של מספר רב של לקוחות (קבלת מידע על X, צריכת שירות Y – עם עדיפות למספר מוגבל/מוגדר מאוד של אפשרויות בחירה).

טיפים:

  • מהי השאלה ששואלים אתכם הכי הרבה במוקד הטלפוני?
  • כשנכנסים לאתר שלכם, מה המידע שמחפשים שם?
  • נסו להתמקד באספקת מידע מסוג Pull (הלקוח יוזם את האינטראקציה) ופחות מסוג Push (אתם יוזמים את האינטראקציה). רוב החברות כיום חושבות / כבר עוסקות בפיתוח הבוט שלהם. עוד רגע ויהיה פה שטף של בוטים. זה לא ייקח הרבה זמן עד שבוטים יתחילו להציק לאנשים בהמון המון הודעות ופניות, רמת הסבלנות של הלקוחות תרד. אנו מציעים להתמקד תחילה בנושאים בהם הלקוחות פונים אליכם, מה שמוריד את הסיכוי שתטרידו אותם עם מידע שלא מעניין אותם ותייצרו אנטגוניזם.

לסיכום, מצאו משימה שחוזרת על עצמה, משהו שמשותף לקבוצת אנשים גדולה, הגדירו את גבולות המשימה בה אתם מטפלים ואל תחרגו ממנה. בתוך אותו דומיין תחקרו לעומק עד כמה שרק אפשר – תייצרו כמה שיותר תרחישי שיחה, צירופי מילים בהם ניתן לשאול שאלה (כמובן שגם תלמדו תוך כדי האינטראקציות עם הלקוחות). חשוב לזכור את שלושת המטרות קצרות הטווח מההתנסויות כיום עם בוטים, שנמצאים ממש בתחילת הדרך:

  1. להתנסות ולהתחיל "לאמן" שרירים חדשים בארגון, להצית את הדמיון לגבי מה ניתן לעשות בעתיד (ומה לא כדאי).
  2. לחנך את הלקוחות ולהרגיל אותם לערוץ חדש באמצעותו ניתן לשוחח עם הארגון שלנו
  3. ללמוד כתוצאה מההתנסויות האלה.

לקריאה נוספת, ניתן לעיין במצגות שלנו בנושא כאן:

האם בוטים הם "הדבר הבא" ב- Customer engagement?